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Life Distribution Properties of Devices
Subject to a Léby Wear Process
by

M. Abdel-Hameed

ABSTRACT

\

assumed to be an increasing Lévy processzxtli Suppose the device has
" -4

Assume that a device is subject to wear. Over time the wear is

2

- _— R
a threshold .Y with right-tail probability G. Let ¢ be the

failure time of the device and F, be its survival probability given

sl X
that X, = x. It is shown that life distribution properties of 4

AML-‘. 0

: —e )
are inherited as corresponding properties of F_, for each x e~R;v~C

.
o

Opcimal replacement policies for such devices are discussed for suitably

chosen cost functions when the failure rate of G is bounded and

L
continuous a.,e., on the support of G .fi:;




1. INTRODUCTION.
Let (9,F,P) be a probability space. On it, X = (Xt) is an
increasing, right continuous, pure jump process with independent

incredments, XO = 0. Every such X has the form (sce ITO(196%))

X = I (X-X ) .
t gt S 5T

and for erery Borel set B < [0,x)x(0,») ,

N(B) = £ 1_(s,X -X )
s>0 B s 8-

has the Poisson distribution with some mean n(B); it follows then

that N(Bl),...,N(Bn) are independent whenever B .,Bn are

10

disjoint. We assume that the mean measure n has the form

n{ds,dy) = A(ds)u(dy) , s>0, y>0.

Then, u 18 necessarily a Lévy measure, that is, u satisfies

fu@y) (yAD) x =

which in turn implies that u((e,»))x ©» for every €> 0 ,

A

and A is an arbitrary measure on (0,») with 0 < A[0,t] < » for
every t . Finally, we assume that the function t>A(t) = A[O,t]

is continuous (necessarily increasing and has A(0Q) = 0).

Since n 1is assumed to have the product form Axu , it is
possible to do a deterministic time change to cause X to have

statfonary and independent increments. Let 1t be the right




continuous functional invergse of A , t.e.,

T(u) = 1inf {t:A(t) > u} , ueR+ . 4

and set

Xu = XT(u) s ueR+
Then, X is an increasing pure jump process with stationary and
independent increments, a Levy process. If N is defined for

X as N was for X , then N is a Poisson random measure with

mean measure ﬁ(ds,dy) = dsp(dy).

For x 1in R+ the probability measure P* is determined by

p"{xt €Aj,1=1,...,n} = P{X €A -x,1=1,...,n}
1 1

and
Px{x0=x} =1,

Let (Q',F',P') be another probability space and Y be a

nonnegative random variable defined on it. For each x in R+

def ine

1 X

P'" = P'( |Y>x) .

; The measure P~ on { =Qx Q' 4s defined as the product measure

P* = P x P'x, EX(E") denotes the expectation w.r-t-P*(P*) and E : E°.

We inferpret X, as the amount of deterjoration, or wear,

suffered by the device during [0,t] , and Y as the threshold




strength of the device, so that
¢z = inf {t: X, z Y}

is the failure time of the device. Define, G(x) = P'(¥>x) and

A = {x: G(x) # 0}. Note that if

z = inf {u: iu 2Y},
then

E = A(g) and [ = 1(2) almost surely. It follows that

_ o~ -

F(t) =P {g >t} =P {Y>Xt}
{EXEE(Xt)]Iﬁ(x) , XeA
(1.1) -
0 , X£A .

Moreover,

Fx(C') - Fx(A(t)) ’
where

F (u) = P*{5 > u}

Ex[(-';(;(u)J/E(x) , X€A

(1.2) ) 0 , XEA |

is the survival probability corresponding to E .

In Section I1 we show that life distribution properties of the

threshold Y are inherited as corresponding properties of the failure




time ¢, under appropriate conditions on the function A(t).

In Section III we determine the form of the optimal replacement

policies for such devices for properly chosen cost functions.

Throughout, the word "increasing' will be used to mean 'hon-

decreasing'and "decreasing" will mean '"nonincreasing".

IT. PRESERVATION OF LIFE DISTRIBUTIONS.

Assume that a device is subject to wear occuring according to
the increasing, right continuous, pure jump process with independent
increments described in Section I. The device bhas a certain
threshold Y defined on (0',F',P'). The device fails once the
wear exceeds or equals to the threshold. Let G be the right tail
probability of the threshold Y and A = {x: G(x) # 0%, Thren
for any x in R+ the survival probability of the device is def ined

by équation (1.1).

In this section we prove that lifc 'fstribution properties
of the threshold right tail probability G are inherited as corresponding
properties of the survival probability ﬁx under suitable conditions

on the function A.

2.1. DEFINITION. Let x ¢ R* and T be the failure time with

survival probability ?x . Define U = {t: ?x(t) > 0}. Then




Fx is said to have:

(1) 1increasing (decreasing) failure rate if Sx(c >t +s|g>t)
is nonincreasing (nondecreasing) in t ¢ Ux for each s e R.:
(11) 1increasing (decreasing) failure rate average if

B () s (2) [B¢%(c]a) IH/°

for each 0 < a <1 and each mondecreasing
function f: R » R+ .
(i11) new better (worse) than used if E L£(z)] 2(<) EX[f(z - s)|z > s]
for each nondecreasing function f: R - R+ and each s ¢ R+ .

A detailed investigation of these classes is given in Barlow and
Proschan [ 2] .

The following shows that life distribution properties of the
function E inherited as, corresponding properties of the suryival

probability Fx given by (1.1), under appropriate conditions on the

function A.

2,2, THEOREM. Let F; be given by (1.1) . Assume the Lévy measure u
is finite. Then the following hold:

(1) 1f G has an increasing failure rate and A is convex and

u < < Leb with a density £ that is PSlya frequency function of

order two (PFZ)’ then f;(t) has increasing failure rate.

(11) If G has a decreasing failure rate and A 4is concave, then

f; has a decreasing failure rate for each x € Ry

(i11) If G has increasing failure rate average and A 1is starshaped,
then ?; has increasing failure rate average for eaeh x ¢ R+

(iv) If G has decreasing failure rate average and A 1is antistarshaped

and y < < Leb with PF_ density, then F(t) has decreasing failure rate

2

average.




(v) 1f G 1is new better tho used and . is superudlitive, ther

for each .. (0,1) and x, t, s - R+ we have

B < F T s). in particular F is new better than used.
Fltes) = F () (1-0)xS) P 0

(vi) 1f C is new worse than used and  is subadditive, then for

each x ¢ R+ s FX 1s new worse than used.
2.3 nEMARK By an argument similar to the one used in the proof of

— ¢ - - - 1

Theorem (3.1) of Abdel-Hameed and Proschan .1 , it suffices to prove the

properties of ¥ in terms of those of © and ., and tnen draw the

conclusion for the non-stationarvy case v using tne relation

PROOF OF THEOREM 2.2 (1). Let N(t) be the number of jumps of X ’
(k)

during (0,t] and u is the kth convolution of u, then
= x 1. (N(t))= =
F (6)= g% [u G(x)1/G(x)

where for each k 2 0, u(k)Ekx) = J E(x+y)u(k)(dy), Ry = R+\{O}.

R

Since ?x(t) = g¥ E(it)/a(x) , then it suffices to show that

fx(t) z EX'E(kt) has increasing failure rate. Since f is a Pblva
frequency of order two, then it follows by an argument similar to

the one used in proving Theorem 4.9 of Esary, Marshall and Proschan

[ 6 J that fk(x) is TP, in k and x . Since G has increasing
failure rate implies that E;(y) = G(x+y) enjoys the same property

for each x , then the result follows from Theorem 5.4 of Karlin [10 7,

page 130.

PROOF OF (ii). 1t suffices to show that ix has decreasing

failure rate. It is evident that Rx is differentiable
and has decreasing failure rate if and only if the function
f: [0,) -~ [0,1] given by fx(t) -y E;(t)/f;(t) is nondecreasing

in t ¢ R+ for each x ¢ R4 .




This is true if and only if for each z ¢ RO’ X € R+ such that

X +2z € A,
D(tl.tz) = Kx+z(t1) Kx(tz) - Kx+z(t1) Kx(t2)
is non positive for t, < Ers £ 5 ty € Ux . By the "Basic Composition

Formla'" (Karlin [10] , page 17) we have that
PCey,k) P | [uHT0ee) w00
D(t,,t,) = LI
k1 < k2 P(tZ’kl) P(tz,kz)

v &G zy 1w *2)G(x)
where P(t,k) 1is the Poisson kernel which is totally positive of

all orders. Therefore for each kl , kz in the domain of the sum

the first determinant is nonnegative and we only need tc show that

for such k1 and k? the second determinant in the sum is nonpositive.

This is true if for each k 2 0, the function o{k,x) = u(k)E

u(k)E(x) is a mixture of

(x)
has decreasing failure rate. But
= def— (k) .

Gy(x) £ G(x+y) with respect to and decreasing failure rate

property 1s preserved under mixtures.

PROOF OF (iii). Since ¥¥(c) = E”E(it)/a(x) , and since E'é(x)]'l/t

is decreasing in t 2 0 , then it suffices to show that Exa(kt)

has increasing failure rate average. Tt suffices to show that

Kx(t) has increasing failure rate average. Since Kx(t) = £ C(§t+ x)
and the function Ex(y) = G(x+y) has increasing failure rate average
when G does, then the result is immediate from Theorem 5.2 of

Esary, Marshall and Proschan [6].

PROOF OF (iv). It suffices to show that Eb(t) has decreasing
failure rate average. Since G has decreasing failure rate average
if and only if G(x) - e X changes sign at most once and 1if once

in the order +,- . Since the density f is PF,, then the

2




compound Poisson kernel £(t,x) = I P(t,k) f(k)(x) is totally
k 20
positive of order two and therefore

— - . _A

Ky0) - e ¥V LB Gk - e &
changes sign at most once and if once in the order - , + , by
"The Variation Diminishing Property", Karlin [ 10 ], page 21.

Note that the average of the failure rate is less than or equal to

{
JR u(dy) = Ltim ¢CA), The function ¥ is increasing ana ¢(0) = O,
0 A-+c0

Therefore, Eb has decreasing failure rate average,

PROOF OF (v). It suffices to show that E;(t) enjoys the desired

property. Now write,

K=, -
E [c(xt+s)]

X (t+s)
X

E['c_;(i(”‘q + x)]

[by definition of ¥ )

]

G(X -X +o0x +X + (1- ]
E[c(xt+s X X ¢t (1-)x)

< E[G(X - is - ax)é(is + (1-a)x) ]

t+s

EG(X, + ax)]E[C(R_ + (1-a)x) ]

(by the stationarity and independence

of the increments]]

ek, DT Bk




PROOF OF (vi). By an argument sinilar to the one used in proving

(v) and reversing the direction of the inequalities, an operation
Justified since G 1s new worse than used instead of being new

better than used we get for each t, s ¢ R+ and ae (0,1)

K, (t+s) 2 Ea.x(t) K (s)
(1-a)x

2 Kx(t) Kx(s)
[since E; decreases in x

Therefore E; is new worse than used for each x ¢ R+ .

The following T!eorem is the key theorem in this section,

2.4. THEOREM. The results of Theorem 2.2 hold for infintte Leévy

measures.

PROOF. We only prove (1), the other cases follow similarly.

First write for neN_ \{o}

X: = y N(ds,dy)
[Oot]x('!'l; ')

Observe that the Lévy measure associated with X" is of the form,

vi(dt,dy) = A(dt) u"(dy) where u"(dy) = u(dy)I L .
('- ’m)

n

Since u 1is a Levy measure, then u(% , ®)< » for each n and

thus u" 1is a finite measure.




S .
For n in N \{0O!} let X = u: R,
+\ ' u T(u) ° +

o 5 Oy ' =n def, x= 0. . . .

By ®hevrem 3.2 it follows that K (t) =" F C(Xt)’ has increarsing
X
- . Rl XS, .
tailure rate. Wwe only need to show that  (t) = F “ﬂ(Atl enjoys
X

the same property. Now ler, D = {x: G(x) 1s discont inuous®,

] ‘n .
Wote that Xt increases to X almost everywhere as n goes to

t

infintty., Let G(x ) = 14 C(y), then 5(XS) CONVerges to

m
- y‘x
G(X ) almest every where for each t  in .. v the bounded

.n

Xr=, I
convergence thecrem we have that F VC(X()J converges to
R i - = B
E 1G(\[ Y! o for each t -0 . Since & has countable number of

discont inuities then it follows from Theorem 1.C of Kesten | 11]

X e . 0 S X o,
that P (A: Dy = 6 tor each ¢ 0O, Trerciore, F° G(X ) =E *”(Xt)J:K (t).
t X

Since limit of increasing failure rate survival functions is an
increasing failure rate survival function, the result follows.
The following theorem is a partial result, when ¢ depends on

X and t .

5.5 THEOREM. lLet F_ be given by (1.1). Assume that G depends

SIS LLL x

nn x and t , Then the following holds:
(i) Suppose that the map X'*Efx,t) has increasing failure rate average

for each t . R+, the map t-*a(x,t) is decreasing for each x LR+

a

and {s starshaped., Then ?; has increasing failure rate average

for each xe:R+ 5

(11) Suppose that the map x-*a(x,t) has decreasing failure rate

and the map t‘*a(x,t) is increasing for each xeR+ . Let [ Dbe

density. Then F_. has

anti{starshaped and u < < Leb with PF 0

2

decreasing failure rate average.

e - ‘iaf.._,‘.‘i'.' ,._‘.Jp'w‘ ”‘ — . . - 7 -

—
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(1i1) Suppose that the map (x,t) *G(x,t) satisfies the property
E(x+y, t+e) < G(x,t) E(y.s) for each x, y, t, s € R+. Let ! be

superadditive. Then, for each x,t,scR+ and a ¢ (0,1), we have

Fx(t+s) < Fax(t) F(l—a)x (s). In particular FO is new better than

used.
(iv) Suppose that the map (x,t) - E(x,t) satisfies the property
E(x+y, t+s) 2 G(x,t) E(y,s) for each x, y, t, s ¢ R, let A be

subadditive. Then ;; is new worse than used.

PROOF OF (1). Define H (t) = E'[G(X,,6)] . It is sufficient
— -t
A : -
to show that for each € R+ Hx(t) e changes sign

at most once and If once in the order + , - .
Fix A and let t' be the point where such a change occurrs.

Define, ﬁ;(t) = gf E(Xt,t'). By Theorems 2.2 and 2.4 it follows that
ﬁ;(t) - e—Xt changes sign once and in the order +, - . Thus,

At

At for t <t' and ﬁ;(t) < e for t 2t' . Since

ﬁ;(t) 2 e
t ~ G(x,t) 1is decreasing in t for each x ¢ R+, then
Ex(t) ZE,'((t:) for t < t' while Hx(t) < i}'((t) for t 2 t'

-t

Y _
Y for t <t'and H (t) < e for t 2t',
X

Therefore, ﬁ;(t) z e

i.e. ﬁ;(t) - e_xt changes sign once and from + to - .

PROOF OF (ii). It is necessary and sufficient to show that for each

X e R+, Fb(t) - e->‘t changes sign at most once and if once in the
order -, + . Fix A and let t' be the point where such a change
occurrs. Define, ib(t) = E E(Xt,t'). By virtue of Theorems 2,2

and 2 .4 it follows that Es(t) ~ eQAt changes in the order -, +.

At At

Thus, i'b(t) < e for t S t' and i(')(t) 2e " for t 2 t'.

Since t -+ G(x,t) 1s increasing in t for each x € R, then

‘x’o(t) Si(')(t) for t s t' and 'io(:) zi(,(t) for t 2t',

At At

Therefore io(t) Se for t 2¢t' .

At

for t <t' and Eb(t) z2e

changes sign once in the order -, +

Hence, Eo(t) -e




PROOF OF (1ii). We need to show that R (t+s) <H (u)¥ (s).
X ax (l-a)x
Observe that ﬁx(t+s) = E%EE(iA(t+s)'t+S)]
< EEE(XA(()+A(S)+ X, t+s)]
= EEE(XA(c)+A(s)' Xpesyt @% + Xy +(1-a)x, t+s) )
< EEE(XA(t)+A(S)— X) syt 0% t)G(XA(S)+(l-u)x,s)J

= EEE(XA(C) +ax,t)] E [E(XA(S +(1-a)x,s)]

)

[By the stationarity and independence of

the increments |

ax - (l-a)x °
=E [‘c‘(xm).r] E [‘é(xA(s).s>]

= Fax(t)F(l_a)x(S)

PROOF OF (iv). The proof of (iv) is similar to the proof of (iii),

and hence 1is omitted.

ITL, OPTIMAL REPLACEMENT POLICY.
In this section we deal with the problem of finding the optimal

replacement policy that minimizes the average cost per unit time for

devices subject to the type of wear processes described in Section I.

z, = ¥ ot
o, t2g

Define

and




Note that

Z = Z
t ACt)
1
and |
- 1
2, = Z. gy » TeR_.
The process Z is obtained by killing the wear process X at the failure
time of the device and sending it to "iternity". The process 2 is
obtained from X similarly. For teR, let Ft = o(zs, s<t) and
Foo=olz_, sst) . '

Devices subject to the wear process Z are replaced at or after
failure at a constant cost c. Replacements before failure depends on
the accumulated wear at time of replacement and is denoted by c(-).
Naturally we assume that the cost of replacement before fallure does
not exceed the cost of replacement at or after failure. We will deal
only with Markovian replacement times with respect to the history
(Ft)' By a Markovian replacement time we simply mean a stopping time
with respect to the cononical history (Ft)'

For each Markovian replacement time 1 the average cost per unit

time wT is of the form
b (x) = B e 1<) ] + F (200 E (D),

For each x in R, let cl(x) = ¢ - c(x) , x€A and equals to zero for

x in the complement of A with respect to F;. Note that

g Tre— e




v (0 {-E"[c<zT>]&c}/E"(r>.

We will give sufficient conditions on the cost function ¢ that

guarantees that the optimal replacement policy that minimizes the

expected cost per unit time is a control policy. Since WT(x)EO for
each 1 for which Ex(r) = +» we will only concern ourselves with
those Markovian replacement times for which EX(1) <o R xcR+. Denote

the class of such replacement times by U.

3,1 REMARK. Let U be the class of Markovian stopping times, ; .

with respect to the history (%t) such that Ex(;)<w » XeR . Note
that 1 belongs to U if and only if A(t) belongs to ﬁ.

The following proposition gives sufficient condition for the
finiteness of the expected failure time,

3.2. PROPOSITION, Assume that the map x »G(x,t) has increasing

failure rate average for each t eR+, and the map t »G(x,t) is
decreasing for each x eR+ and A 1is starshaped., Then Ex(g) is

finite for all xe R+.

- °X
PROOF., From Theorem 2.5 we know that Fx(t) = P (¢ » t) has increasing

o
failure rate average. Therefore there exists X and t ¢ R, such

that F;(t) > e-kt for t < t° and F;(t) < e-)‘t for t > 2.
Therefore, "
) - j F (oae
x
0
£ I e
< F (t)dt +J e " Tdt
o X to
<o




Let b2(A) be the class of bounded Bore: measurable functions

whose domain is A, Every function in this class is extended to i;

by defining it to be equal to zero outside A. We denote the class of

such functions by & For the stationary process Z we define the

0
semigroup q:on 80 by Qtf(x) = Exff(ZL)] for x in A and Otf(x) 0

for x outside A. From the definition of E* it follows that

Q f(x) = Ex[f(it)a(xt)jfa(ko)? for x in A and equals to

zero for x outside A.

For functions in EO the infinitsimal generator
Q¢ -7
lin ~£*v~——', where the limit -5 teter o e the uniforr linit
tl.(‘
e let DIO) Yo : 0f ewists:. Then, DY i called tie
[3 € FO

domain of the¢ generator.

For any function f¢ Bo we define h:R+ x R+ -~ R by

R(x,y) = G T[E(x + v)Tx + ) - 16T,

and note that suplh(x,y)!l < ZHf:. Define the operator

X,V

1:bB(A) ~ B(A: by

TE(x) = [ h(x,v)u(dv),

JRO

Note that T is not necessarily bounded, since u 1is not

necessarily finite., However, if G is differentiable on A and the failure

rate is bounded, then T 1is bounded on the set of funcrion ftﬁ) such
that f' ¢ 60. To see this observe that adding and subtracting

[f(x)akx + y)]/E(x) to the definition of h and using Lagrange's

Theorem we have that




hix,y) = [v/COI[-Cr(x + & ) f(x) - f'(x + ".‘,)y)'(?(x + v)]
< y{[-G'(x + '311')/5(2‘: + 91}’)]1'00 - f'(x + ‘3f,y)[’5(x + v) /G 1.
It follows that for each f ¢ 6U with {‘'e bo we have that,

for each yc5R+ s

IA

vliverfi #eil e,

sup|h(x,Vy) |
X
=yM

where r is the supremum of the failure rate and M = [ JJf'!l + "¢} ],

For such functions we therefore have that

rell = ] noxn el
R
0
a x
< MJ yu(dy) + 2 Hf}lj 2 (dv)
0 a

. . . . . “
The last inequality is true since for LeVy measure . we have that

. :1
(wAalu(dy) < = which is true ir and onlyv if © yi(dv) < » oo

K )
Ky ¢

x a 1 rad
{ w{dy) < =, Thus, for a > 1, J yr(dy) = ( vu(dy) + : vi(dv)

Jl 0 JO !
NN G -

< 1 owvu(dy) + al u(dy) < =5 and f w(dy) < =, This gives uc the
‘0 ‘1 ‘a

inequality,




The following theorem illustrates the fact that if G is

differentiable with bounded continuous failure rate, on its support,

then {f « B'j £« b.c.h’o . D(G) and Gf = Tf.

3.3. THEOREM. Assume that G 1is differentiable with bounded almost

everywhere continuous failure rate on its support. Then,

def
H ={f e bx :f' ¢ bc,r tc D)
[*] W

and
cf = Tf,
PROOF. Consider for f ¢ H
Qf - f L |
(| - Tfli = HJ h(x,y) [T Q (dv) = u@@n 1.
R

0

Let Qt(dy) = %-yQt(dy). By an argument similar to the one used in
proving Theorem 1, page 302 of Feller [8], it follows that Ql/n{[D,a)}
is bounded for any a € R+ and an/n[[ao,m)} < ¢ for all n for

some a° ¢ R+. By Helly's Theorem there exists a sequence (nk) such

that as t runs through it, the measures Qt(dy) converges weakly
to some measure ! over finite intervals. Therefore, to see that the

limiting measure € equals yu observe that for each X > 0,




)

e Lztplace transtorm of is of the rorm
[ -
-t (1 - ¢ A
~ Jw ’
- /)
E(L T ) = ¢

-hv,
N c -)\} (.1 - T l,
hserve that for each h, !e e =(y"1),

the right-hand side of the inequality is integrable with respect to

hy properties of the Lévy measure, Therefore, bv the LEBESCUE

DOMINATED CONVERGENCE THEOREM it follows that

(
J

’
I

: (1 - e—ly)u(dy) =
'Ro

-y
e yu(dy),

-4
d>
®n

which is the Laplace transform ef yu, Upon differentiating each

side of the Laplace transform formula above with respect to and

dividing through by t and taking limits as t approaches zero we
get
. ~A 1 -
lim [ eV = v (ay) =J e " yu(dy)
>0 RO RO
Since % yQt converges weakly over finite intervals and by the

uniqueness of the Laplace transform the limiting measure is & = yi,

fa

Let u(x,y) = G “F(x)[-C'(x + D EG) - £(x + 20T + )],

fa a
Then, J h(x,y)l Q (dy) = [ u(x,y)y l-Q (dy) the last term converges

0 t °t JO t °t
a
J u(x,y)yu(dy) at each continuity point a of yu(dv)., This
0
convergence is uniform since u 1is continuous, Then, for any f ¢
we have

Qf - f 1
= - rell - ll] h(x,y) [T Q (dy) - u(am]ll .
R .

0

H




arv point ot ocontinulily 1 ot L PR Al enCEe o8 L W T

,
. el ‘ i . .
last term is less thon or ecual to RS S G-
- ; .
< Wik, y)T 0 (dvytt o+ Cohilw, vy D) L T e T st ternmogoes
- a ) ‘4
_‘V
sers oa. ot varies over (n,). The second term ic less than or ejud’
|4 ’
P 1 . R N BN Y I - . _1 . .
[N 2.t = :[a,‘)' R J? X when ot varies over i, ). The
t t g
-5 R . - . R r. oyoes - - o M
toird term is less than or equal to 70 cla,oh i, this torm can he

mede small wnough bv choosing & laree encug'.., Therdiore, we conclude

that e - Tf|l » 0 as t - 0 through (a ). The result then
t 3 .

k

‘ollows from Lemma 3, page 297 of Feller [8&].
The proof of the following proposition is obvicus ané hence is

omitted,

3.4, PROPOSITION, Let b = ;?6 wT and assume that b > 0, Then the

following two problems are equivalent in the sense that they have the

same solution:

(P.) minimize wr over all 1 ¢ U

1
def ~
(».) maximize #_ = hE (%) + E"(cl(zT)) for all « ¢ U ,

Finallyv, we state and prove the key theorem in this section,
3.5, THEOREM. Let ¢ ¢ {f ¢ B +f' € b.c. 8 }. Suppose that
b + Gcl(x) crosses the x-axis at most once and if once then the

crossing is from above. Assume that Ex(c) < ® for all x € R+.

Define
a = inf{x:b + Gcl(x) < 0},

Then * -
T = infle 2 0:2 < [2,=]}

is the solution to (P2) and lience to (Pl)'




A AT

PROOF. By Remark 3.1, 1t sutfices to prove the result for the

stationary process Z. Let = inf{t: z o« Ta,~}; and note that
t does not exceed ¢ . By assumptions, it follows that Ex([)<u.
1t is therefore clear that 1t 1is in U. From Theorem 2.11.2 of

Ito [9]) it follows that for each Ter .

T ~
B-(x) = E~ J (b + Gc (Z ))dx + ¢, (%)
T 1'"s 1

for each xe,R+. Since 1* belongs to U , then for each 1e¢l' we have

Tk .
I . T .
that  f_,(x) - £.(x) = E[| (b + Ge, (2 ))de = | (b + Gc (Z )ds],
1 T -0 1 S ‘0 1 s
-
~ . . . oA ‘ - , 5 - b
The right-hand side equals | [l (h + Gc,(lg\\dsl |
‘1 T (= 79

T :
- EX[JA (b + GCI(ZS))dsl . J. The first term is positive by

T (1 <)

s . - * ] . . - Y -
definition of 1 , The second term is also positive by definition of
N* . o - s . . . :
T and since 7 1is increasing., This finishes the proof.

4,6, EXAMPLES, (a) Assume that

G(y)

Then,
Gcl(x) = { (cl(x +v) - cl(x)) 1 [O,yo—x)(y)U(dy)’
0

and the optimal replacement policy is a control policv if c(x) is
strictly convex,

(b) Assume that G(y) = e 7 , 0 sy < y° and zero
otherwise. Thus, A = (G,yo) and we have that
Gcl(x) = J (e-ycl(x +y) - Cl(x))“(dY). xcA,

A
and zero otherwise.




and the optimal replacement policv is easily sevi, toe be a control
policy if «¢(x) 1is convex strictly increasing. Since convex
increasing functions approaches infinity as x approaches infinity,

and c(x) 1is bounded then A must bte finite.
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